14 research outputs found

    Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARKAGE Study

    Get PDF
    Gradual changes in the DNA methylation landscape occur throughout aging virtually in all human tissues. A widespread reduction of 5-methylcytosine (5mC), associated with highly reproducible site-specific hypermethylation, characterizes the genome in aging. Therefore, an equilibrium seems to exist between general and directional deregulating events concerning DNA methylation controllers, which may underpin the age-related epigenetic changes. In this context, 5mC-hydroxylases (TET enzymes) are new potential players. In fact, TETs catalyze the stepwise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), driving the DNA demethylation process based on thymine DNA glycosylase (TDG)-mediated DNA repair pathway. The present paper reports the expression of DNA hydroxymethylation components, the levels of 5hmC and of its derivatives in peripheral blood mononuclear cells of age-stratified donors recruited in several European countries in the context of the EU Project ‘MARK-AGE’. The results provide evidence for an age-related decline of TET1, TET3 and TDG gene expression along with a decrease of 5hmC and an accumulation of 5caC. These associations were independent of confounding variables, including recruitment center, gender and leukocyte composition. The observed impairment of 5hmC-mediated DNA demethylation pathway in blood cells may lead to aberrant transcriptional programs in the elderly

    Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging

    Get PDF
    Defects in the DNA repair mechanism nucleotide excision repair (NER) may lead to tumors in xeroderma pigmentosum (XP) or to premature aging with loss of subcutaneous fat in Cockayne syndrome (CS). Mutations of mitochondrial (mt)DNA play a role in aging, but a link between the NER-associated CS proteins and base excision repair (BER)-associated proteins in mitochondrial aging remains enigmatic. We show functional increase of CSA and CSB inside mt and complex formation with mtDNA, mt human 8-oxoguanine glycosylase (mtOGG)-1, and mt single-stranded DNA binding protein (mtSSBP)-1 upon oxidative stress. MtDNA mutations are highly increased in cells from CS patients and in subcutaneous fat of aged Csbm/m and Csa−/− mice. Thus, the NER-proteins CSA and CSB localize to mt and directly interact with BER-associated human mitochondrial 8-oxoguanine glycosylase-1 to protect from aging- and stress-induced mtDNA mutations and apoptosis-mediated loss of subcutaneous fat, a hallmark of aging found in animal models, human progeroid syndromes like CS and in normal human aging

    Effects of Protein and Calorie Restriction on the Metabolism and Toxicity Profile of Irinotecan in Cancer Patients

    No full text
    Preclinical data suggests that protein and calorie restriction (PCR) might improve treatment tolerability without impairing antitumor efficacy. Therefore, we have studied the influence of PCR on irinotecan pharmacokinetics and toxicity. In this crossover trial, patients with liver metastases of solid tumors were included and randomized to treatment with irinotecan preceded by 5 days of PCR (~ 30% caloric and ~ 70% protein restriction) during the first cycle and a second cycle preceded by a normal diet or vice versa. Pharmacokinetic blood sampling and biopsies of both healthy liver and liver metastases were performed. The primary end point was the relative difference in geometric means for the active metabolite SN-38 concentration in healthy liver analyzed by a linear mixed model. No significant differences were seen in irinotecan (+ 16.8%, P = 0.22) and SN-38 (+ 9.8%, P = 0.48) concentrations between PCR and normal diet in healthy liver, as well as in liver metastases (irinotecan: −38.8%, P = 0.05 and SN-38: −13.8%, P = 0.50). PCR increased irinotecan plasma area under the curve from zero to 24 hours (AUC0–24h) with 7.1% (P = 0.04) compared with normal diet, whereas the SN-38 plasma AUC0–24h increased with 50.3% (P < 0.001). Grade ≄ 3 toxicity was not increased during PCR vs. normal diet (P = 0.69). No difference was seen in neutropenia grade ≄ 3 (47% vs. 32% P = 0.38), diarrhea grade ≄ 3 (5% vs. 21% P = 0.25), and febrile neutropenia (5% vs. 16% P = 0.50) during PCR vs. normal diet. In conclusion, plasma SN-38 exposure increased dramatically after PCR, whereas toxicity did not change. PCR did not alter the irinotecan and SN-38 exposure in healthy liver and liver metastases. PCR might therefore potentially improve the therapeutic window in patients treated with irinotecan

    Disruption of circadian rhythm by alternating light-dark cycles aggravates atherosclerosis development in APOE*3-Leiden.CETP mice

    No full text
    Disruption of circadian rhythm by means of shift work has been associated with cardiovascular disease in humans. However, causality and underlying mechanisms have not yet been established. In this study, we exposed hyperlipidemic APOE*3-Leiden.CETP mice to either regular light-dark cycles, weekly 6 hours phase advances or delays, or weekly alternating light-dark cycles (12 hours shifts), as a well-established model for shift work. We found that mice exposed to 15 weeks of alternating light-dark cycles displayed a striking increase in atherosclerosis, with an approximately twofold increase in lesion size and severity, while mice exposed to phase advances and delays showed a milder circadian disruption and no significant effect on atherosclerosis development. We observed a higher lesion macrophage content in mice exposed to alternating light-dark cycles without obvious changes in plasma lipids, suggesting involvement of the immune system. Moreover, while no changes in the number or activation status of circulating monocytes and other immune cells were observed, we identified increased markers for inflammation, oxidative stress, and chemoattraction in the vessel wall. Altogether, this is the first study to show that circadian disruption by shifting light-dark cycles directly aggravates atherosclerosis development
    corecore